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The research effort has been focused on the development of an
advanced flow solver for complex viscous turbulent flows with shock
waves.

The three-dimensional Euler and full/thin-layer Reynolds-
averaged Navier-Stokes equations for compressible flows are solved
on structured hexahedral grids. The Baldwin-Lomax algebraic
turbulence model is used for closure. The space discretization is
based on a cell-centered finite-volume method augmented by a
variety of numerical dissipation models with optional total variation
diminishing limiters. The governing equations are integrated in time
by an implicit method based on lower-upper factorization and sym-
metric Gauss-Seidel relaxation. The algorithm is vectorized on
diagonal planes of sweep using two-dimensional indices in three
dimensions.

A new computer program named CENS3D has been developed
for viscous turbulent flows with discontinuities. Details of the code
are described in Appendix A and Appendix B.

With the developments of the numerical algorithm and
dissipation model, the simulation of three-dimensional viscous
compressible flows has become more efficient and accurate. The
results of the research are expected to yield a direct impact on the
design process of future liquid fueled launch systems.
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L. Introduction

Although unstructured grid methods have been used successfully in solving the Euler equations
for complex geometries, structured zonal grid solvers still remain the most useful for the Navier-
Stokes equations because of their natural advantages in dealing with the highly clustered meshes in
the viscous boundary layers. Zonal structured grid methods not only handle reasonably complex
geometries using multiple blocks, but also offer a hybrid grid scheme to alleviate difficulties which
unstructured grid methods have encountered. Recent developments in structured grid solvers have
been focused on the efficiency as well as the accuracy since existing three-dimensional Navier-Stokes
codes are not efficient enough to be used routinely for aerodynamic design.

The author! has introduced an implicit algorithm based on a lower-upper factorization and
symmetric Gauss-Seidel relaxation. The scheme has been used successfully in computing chemically
reacting flows due in part to the algorithm’s property which reduces the size of the left hand side
matrix for nonequilibrium flows with finite rate chemistry.?:3 More recently, a study? suggests that
the three-dimensional extension of the method is one of the most efficient ways to solve the Navier-
Stokes equations. Consequently, a new three-dimensional Navier-Stokes code named CENS3D was
produced. CENS3D requires less computational work per iteration than most existing codes on a
Cray YMP supercomputer and in addition converges reasonably fast. The performance of the code
is demonstrated for a viscous transonic flow past an ONERA M6 wing.

II. Numerical Methods

Let t be time; Q the vector of conserved variables; E F and G the convective flux vectors; and
Eu, F,,, and G., the flux vectors for the viscous terms. Then the three-dimensional Navier-Stokes
equations in generalized curvilinear coordinates (£, 7, {) can be written as

8:Q+8(E-E)+8,(F-F,)+0,(G-G,)=0 (1)

where the flux vectors are found in Ref. 4.



An unfactored implicit scheme can be obtained from a nonlinear implicit scheme by linearizing
the flux vectors about the previous time step and dropping terms of the second and higher order.

[+ aODeA + DyB + DOYO = —AtR }/fiz

where R is the residual

R=D¢(E - E,)+ Dy(F — F,)+ D(G - G.) (3)

and I is the identity matrix. 6@ is the correction é"“ - é", where n denotes the time level. Dg,
Dy, and D¢ are difference operators that approximate J¢, d,, and d;. A, B, and C are the Jacobian
matrices of the convective flux vectors.

An efficient implicit scheme can be derived by combining the advantages of LU factorization
and Gauss-Seidel relaxation.

LD'UsQ = ~AtR (4)

Here,

L=1I+aAt(D; A* + Dy B* +D;C* -4~ - B~ - (")
D=I+alt(A*—A~+B*-B +C*-C")

~ ~ n s Al A (5)
U=1I+alAt(DfA” + DfB~ 4+ DfC™ + A* + Bt +C)

where Df' » Dy, and DC_ are backward difference operators, while D}, D,T , and Dg’ are forward

difference operators.

In the framework of the LU-SGS algorithm, a variety of schemes can be developed by different
choices of numerical dissipation models and Jacobian matrices of the flux vectors. Jacobian matrices
leading to diagonal dominance are constructed so that “ + ” matrices have nonnegative eigenvalues

while “ - ” matrices have nonpositive eigenvalues. For example,
it _ patp-1
AT =TeAF T
gt — T Axp-1
B* = T,AT; (6)
~t _ p a1
C* =TAL T,

where ﬁ and f’{l are similarity transformation matrices of the eigenvectors of A. Another possibility
is to construct Jacobian matrices of the flux vectors approximately to yield diagonal dominance.

At = %[Zi (A
B* = 1B+ (B (7)

~ 1.~ A~
C* = FIC+A(O)]



where
H(A) = k maz(] MA) [] (8)

for example. Here A(A) represent eigenvalues of the Jacobian matrix A and « is a constant that is
greater than or equal to 1. Stability and convergence are controlled by adjusting x either manually
or automatically as the flowfield develops.

It is interesting to note that the need for block inversions along the diagonals can be eliminated
if we use the approximate Jacobian matrices of Eq. (7). Setting & = 1 and At = 00 yields a Newton-
like iteration. Although a quadratic convergence of the Newton method cannot be achieved because
of the approximate factorization, a linear convergence can be demonstrated. The use of Newton-like
iteration offers a practical advantage in that one does not have to find an optimal Courant number
or time step to reduce the overall computer time.

The cell-centered finite-volume method* is augmented by a numerical dissipation model with
a minmod flux limiter. The coefficients of the dissipative terms are the directionally scaled spectral
radii of Jacobian matrices.

III. Results

In order to demonstrate the performance of the CENS3D code, transonic flow calculations have
been carried out for an ONERA M6 wing. A 289 x 50 x 44 C-H mesh (635,800 points) is used as
a fine grid. The distance of the first grid point from the wing surface is 1.0 x 10~% times the chord
length at the root section. The freestream conditions are at a Mach number of 0.8395, Reynolds
number of 1.5 x 107, and a 3.06° angle of attack. This is an unseparated flow case. The algebraic
turbulence model by Baldwin and Lomax is employed for mathematical closure of the Reynolds-
averaged Navier-Stokes equations. The root-mean-squared residuals drop 3 orders of magnitude in
about 380 iterations or 38 minutes of CPU time on the fine grid. In the present implementation,
the implicit left hand side viscous terms are not included which decreases the computational work
per iteration. To investigate the effect of this left hand side compromise on the convergence rate,
a grid-convergence study has been performed using a 171 x 25 x 44 (188,100 points) coarse grid.
Although the number of radial grid points to resolve the viscous boundary layer is doubled in the
fine grid case, the fine grid convergence is slowed by only twenty percent. Fig. 1 and Fig. 2 show a
good agreement between experimental data® and the pressure coefficients at 44% and 65% semi-span
stations computed on the fine grid. This comparison validates the present code CENS3D.

The CENS3D code requires only 9 usec per grid-point per iteration for the thin-layer Navier-
Stokes equations with an algebraic turbulence model on a single Cray YMP processor at the sus-
tained rate of 175 Mflops. It is interesting to note that the LU-SGS implicit scheme requires less
computational work per iteration than a Runge-Kutta explicit scheme.

Conclusions

Good performance of a three-dimensional Navier-Stokes solver CENS3D based on an implicit
lower-upper Gauss-Seidel scheme is demonstrated for nonseparated transonic flow past a wing. In
addition to its reasonabe convergence rate, the code requires very low computational time per
iteration. The three-dimensional Navier-Stokes solution of a high Reynolds number flow using
636K grid points is obtained in 38 minutes. The computational results compare well with available

experimental data.
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Abstract

A three-dimensional numerical method based on the lower-upper symmetric-Gauss-Seidel implicit
scheme in conjunction with the flux-limited dissipation model is developed for solving the compressible
Navier-Stokes equations. A new computer code which is based on this method requires only 9 usec per
grid-point per iteration on a single processor of a Cray YMP computer and executes at the sustained rate
of 175 MFLOPS. A reduction of three orders of magnitude in the residual for a high Reynolds number flow
using 636K grid points is obtained in 38 minutes. The computational results compare well with available

experimental data.
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Since the computational requirements for direct simulation of turbulent flows about complex three-
dimensional geometries are still beyond the reach of the most powerful supercomputers, most numerical
algorithms developed so far focus on the solution of the Reynolds-averaged Navier-Stokes equations, which
can be obtained by ensemble-averaging of rapidly fluctuating components. The governing equations of fluid
flows can be integrated by either explicit or implicit methods. Although explicit schemes have been successful
in solving the Euler equations for inviscid flows, the efficiency of explicit schemes in solving the Navier-
Stokes equations is limited by the Courant-Friedrichs-Lewy condition, which is especially restrictive when
the computational grid is highly clustered to resolve the viscous boundary layer. When the time step limit
imposed by an explicit stability bound is significantly less than the accuracy requirement, implicit schemes
are often preferred. However, the trade-off between a decreased number of iterations and an increased
operation count per iteration for the implicit methods must be considered. The fastest convergence rate
may be attained by an unfactored implicit scheme which directly inverts a large block banded matrix using
Gaussian elimination. Such a scheme is impractical in three-dimensions because of the rapid increase of the

number of operations as the number of mesh points increases and because of the large memory requirement.

Yoon and Jameson!~?3 introduced an implicit algorithm based on a lower-upper factorization and
Gauss-Seidel relaxation for the Euler and Navier-Stokes equations. Since then, the lower-upper symmetric-
Gauss-Seidel (LU-SGS) scheme has been successfully implemented by many researchers. Shuen and Yoon*
applied the method to supersonic combustion ramjet problems for the National Aero-Space Plane to take
advantage of the algorithm’s property that reduces the size of matrix for reacting flows with finite rate
chemistry. The resulting computer program RPLUS was named after the original perfect gas code PLUS
(Program using LU Schemes).! A variation of the PLUS code named IPLUS was applied to internal flows
through turbomachinery cascades in conjunction with an interactive grid generation technique by Choo, Soh,
and Yoon.® Another variant named HPLUS demonstrated the robustness of an LU scheme at high Mach
numbers.® Rieger and Jameson? developed a three-dimensional code based on an early version of the PLUS
code and applied it to Hermes, the European space shuttle. Yu, Tsai, and Shuen® extended the RPLUS
code to three-dimensions. Coirier® developed a finite difference version of the RPLUS code for corner and

gap-seal calculations. However, the accuracy and efficiency of the above codes have been limited by the



artificial viscosity model.!?

Yoon and Kwak!!!2 proposed that a variety of schemes could be constructed in the framework of
the LU-SGS algorithm by different choices of Jacobian matrices of flux vectors and numerical dissipation
models. The computer code CENS2D (Compressible Euler and Navier-Stokes) was written to study the
effects of different dissipation models. It was observed that the blended first and third order model was
the least accurate while the flux-difference split upwind-biased model was not only the most expensive but
the least robust when the grid lines were not aligned with strong bow shock waves. It was concluded in
the study that the flux-limited dissipation model was a practical alternative to upwind schemes because
of its robustness, efficiency and accuracy for high speed external flows. Recently, promising results were
reported using upwind-biased and total variation diminishing schemes with the LU-SGS implicit scheme.
They include Obayashi'? for underexpanded plumes, Chen, McCrosky, and Obayashi!4 for forward-flight
rotor flow, Loh and Golafshani!5 for flows in hybrid rocket motors, Yungster!® for shock wave and boundary
layer interactions, and Imlay and Eberhardt!” for flows past the Aeroassist Flight Experiment vehicle. In
the meantime, the CENS2D code has been extended by Park and Yoon'®-20 to compute thermo-chemical

nonequilibrium in hypersonic external flows using a multiple temperature model.

While conventional implicit methods often achieve fast convergence rates, they suffer from greater
computer time per iteration than explicit methods. The LU-SGS implicit scheme offers a potential for very
low computer time per iteration as well as fast convergence. High efficiency can be achieved by accomplishing
the complete vectorizability of the algorithm on oblique planes of sweep in three-dimensions.?! It has been
demonstrated that the LU-SGS scheme requires less computational work per iteration than most existing
schemes on a Cray YMP supercomputer in the case of three-dimensional viscous incompressible flows. One
of the objectives of the present work is to provide standard performance figures which the LU-SGS scheme
can achieve for three-dimensional compressible flows in conjunction with the flux-limited dissipation model

by developing a new testbed code named CENS3D.

II. The Navier-Stokes Equations




Let t be time; p, p, and T the density, pressure, and temperature; u, v, and w the velocity components
in Cartesian coordinates (z,y, z); Q the vector of conserved variables; E, F , and G the convective flux
vectors; and E,,, f.,, and 5’,, the flux vectors for the viscous terms. Then the three-dimensional Navier-

Stokes equations in generalized curvilinear coordinates (£, 7, ¢) can be written as

WQ+0(E-E,)+0,(F-F)+08,(G-G,)=0 (1)

The flux vectors for compressible and incompressible flows are different. The flux vectors for compress-

ible flow are

p pPU ]

. pu . pUu +&xp
Q=h|pv|, E=h|pUv+&p
pw pPUw +&,p

e U(e + p) J

(2)

pV W 7

- pVu+nop - pPWu + (op
F=h]|pVo+np|, G=h|pWv+{p
pPVw+n,p pPWw +(;p

V(e +p) W(e+p) |

where e is the total energy. The contravariant velocity components U, V, and W are defined as

U=&u+&§v+&w
V=nu+nv+nuw (3)

W=CGu+{v+(w

The equation of state is needed to complete the set of equations for compressible flow.

p= (1= Dle = 5o(s? +v7 +u?)] (4)



where 7 is the ratio of specific heats. Here, h is the determinant of the inverse of transformation Jacobian

matrix.
If Iy I¢
h=lve w ¥ (5)
Zf Z,, 2’(

The flux vectors for incompressible flow can be written in a similar way if the pseudocompressibility
formulation?! is used. In a finite volume formulation, h is identical to the mesh cell volume. The viscous

flux vectors are

)

v = h[ezEu + fyFu +£va]
F, = h[n:Ey + 1y Fy + 0.G.,] (6)

Gy = h[G: By + ¢y F +(,G)
Their Cartesian components are
[ 0 T

Tf&'
E, = Try

Trz
L UTee + UToy + wTp, + kB,TJ

o 0 -
F', = Tyy (7)
L urys + v1yy + wry, + kO, T

[ ; '

TZZ

LUt + vy + wr,, + £0,T

where
2
Ter = 240, u — §y(6,u + 0yv + 0, w)
2
Tyy = 2u0yv — gp(B,u + 0yv + J,w)
Tez = 2u0,w — gp(azu + Gyv + 0. w)
Toy = Tyz = #(Oyu + Opv)
Tz: = Tip = (0, u + O, w)

Ty: = Tzy = p(0:v + 6!1“’)



Here the coefficient of viscosity u and the coefficient of thermal conductivity k are decomposed into laminar

and turbulent contributions.

B= 4 e (9
Y B He
= (B K
¥ - I(Pn + Pr,) (10)

where Pr; and Pr, denote laminar and turbulent Prandtl numbers.

While the Euler equations can be obtained by neglecting the viscous terms, the thin-layer Navier-Stokes

equations can be obtained by retaining the viscous flux vector in the direction normal to body surfaces.

II1. Implicit Methods

The governing equations are integrated in time for both steady and unsteady flow calculations. For a
steady-state solution, the use of a large time step leads to fast convergence. For a time-accurate solution, it
is desirable that the time step is determined by the physics rather than the numerics. An unfactored implicit
scheme can be obtained from a nonlinear implicit scheme by linearizing the flux vectors about the previous

time step and dropping terms of the second and higher order.

[I +aAt(D¢A + D, B + DC)6Q = —AtR (11)

where R is the residual

R=D¢(E - E,) + D)(F - F,) + D;(G - G,) (12)

and I is the identity matrix. 6@ is the correction Q"‘H - Q", where n denotes the time level. D¢, D,, and
Dy are difference operators that approximate O¢, Oy, and ;. 2, 5, and C are the Jacobian matrices of the

convective flux vectors.



A=23, B:a—lj, 6':92 (13)
0Q 0Q

For compressible flow,

0 §z
. £:q—-Uu U —-¢&u(y-2)
A= 1&&i-Uv &Lu-&u(v-1)
fzfi—U}U fziy_fzu(‘)’_ 1)
U(G—h) &h—Uu(y-1)

(continued)
& & 0
Eyu—fzv('f_ 1) fzu—fzw('y_ 1) Ez('Y_ 1)
U-§u(r-2) &Lu—-&u(y—1) &(v-1)
Gu—&u(y—1) U-&uw(y-2) &(v-1)
Eh~Uv(y—-1) &Lh-Uw(v-1) U~
where
i= 7_;¥(u2 + 0% 4+ wd) (14)
hott? 1
p (15)

Matrices B and € are similarly derived. Although the direct inversion method seems to be competitive with
approximate factorization methods in the overall computing time in two-dimensions,?? direct inversion of a
large block banded matrix of the unfactored scheme Eq. (11) appears to be impractical in three-dimensions

as stated before.

To alleviate this difficulty, many investigators have focused on indirect methods. The popular Alter-
nating Direction Implicit (ADI) scheme by Beam and Warming?? or Briley and McDonald?* replaces the

implicit operator of the unfactored scheme by a product of three one-dimensional operators.

(I + altD¢A)(I + aAtD, BY(I + aAtDCY6Q = —~ALR (16)



The ADI scheme which is unconditionally stable in two-dimensions becomes unstable in three-dimensions,
although numerical dissipation conditionally stabilizes the method. Due to three factors, the ADI scheme
also introduces the error terms of (At)3. The large factorization error associated with this scheme further
reduces the rate of convergence. In spite of these drawbacks, the ADI scheme has been successful due to
the reduction of cost by the diagonalization of Jacobian matrices by Pulliam and Chaussee.?® Obayashi and

Kuwahara?® developed a scheme by replacing each factor with bidiagonal LU factors.

(I+ aAtD; A*)(I + aAtDf A™)(I + atrtD; B¥)(I + aMtD} B™)
(I +attD; CH)(I+atrtD}C7)6Q = —AtR (17)

Stability and convergence characteristics of the LU-ADI scheme appear to be similar to the ADI scheme.

The factorization errors of two-factor schemes, which are of order (At)?, are lower than the ADI scheme.
Two-factor schemes can also be stable in three-dimensions. Steger proposed a two-factor scheme??28 by

partially splitting the flux vectors.

[ + a&(D; A* + D, B)I + aAt(D} A~ + D,C))6Q =
-AYD; EY + D} E™ + D, F + D;G) (18)

The scheme was incorporated in F3D code?®?® and CNS code.3° The partially flux-split scheme is more

expensive than the diagonalized ADI scheme because of block tridiagonal inversions.

An alternative two-factor scheme is based on an lower-upper(LU) factorization proposed by Steger and

Warming?? and Jameson and Turkel3!.

LUSQ = -AtR (19)



where

L =1+aAt(D; A* + D; B* + D;C*)
R R R (20)
U=1+al(D}A~+D}YB~ +D}C")

where D¢, Dy, and D; are backward difference operators, while DY, D,‘:’ , and DZ’ are forward difference
operators. Despite its early introduction in the late *70s, the LU scheme had not been used until it was
independently implemented by Buning and Steger®?, Whitfield®3, Buratynski and Caughey3?, and Jameson

and Yoon.2 The cost of the LU scheme is more expensive than the diagonalized ADI scheme because of

block diagonal inversions.

MacCormack® introduced an implicit line relaxation method based on back-and-forth symmetric
sweeps in conjunction with upwind flux splittings. Although the line Gauss-Seidel relaxation method al-
lowed significant increase of work per iteration compared to approximate factorization schemes due to mul-
tiple block tridiagonal inversions and sequential operations, it achieved very fast convergence rates. In fact,
all the implicit schemes mentioned above require much larger computational work per iteration than explicit

schemes.

Yoon and Jameson! derived a new implicit algorithm by combining the advantages of LU factorization
and SGS relaxation. The LU-SGS scheme has quite different L and U factors from those of the LU scheme.
Unlike the line SGS relaxation scheme, no additional relaxation or factorization is required on planes of

sweep. The LU-SGS scheme can be written as

LD™'UsQ = —AtR (21)

where



L=1+aAyD; A*+D;B*+D;C* - A~ - B~ -C")

D=1I+alt(A* - A~ +B* -B~ +C+-C")
R R R R R (22)
U=1+alt(D}A” +D}B™ + D}C~ + At + B* +C*)

In the framework of the LU-SGS algorithm, a variety of schemes can be developed by different choices
of numerical dissipation models and Jacobian matrices of the flux vectors.!! It is desirable that the matrix
should be diagonally dominant to assure convergence to a steady state. Jacobian matrices leading to diagonal
dominance are constructed so that “ 4+ ” matrices have nonnegative eigenvalues while “ - ” matrices have
nonpositive eigenvalues. For example,

AL = j‘we Aéhj‘ws-l

Bt =TT (23)

Cc* = ﬁ’ A?fc‘l
where ﬁ and ’f{l are similarity transformation matrices of the eigenvectors of A. Another possibility is to

construct Jacobian matrices of the flux vectors approximately to yield diagonal dominance.

N 1.~ -

A = A+ A
Bt = %[B' + 3(B)I] (24)
&t = 3 [C+ 4O

where
A(A) = & maz[| A(A) |] (25)

for example. Here A(E) represent eigenvalues of the Jacobian matrix A and & is a constant that is greater than
or equal to 1. Stability and convergence can be controlled by adjusting « either manually or automatically

as the flowfield develops. The diagonal matrix of eigenvalues is

U 6 0 0 0
o v o o 0
AA)=]0 0 U 0 0 (26)
0 0 0 U+C¢ 0
00 0 0 U-Ce



and

Ce = c\[€2 + €2 + €2 (27)

where ¢ is the speed of sound

c= 12 (28)

In the early days of development of codes such as the PLUS series, the Eq. (21) was inverted in three

steps as following.

6Q* = —AtDR
6@“ = L—lét (29)
5Q=U"'Q™

This is not a mathematically correct procedure, although no difference in the solution or convergence has
been observed when D is a scalar diagonal matrix. The correct order used in INS3D-LU and CENS3D codes
is
6Q* = ~AtL™'R
6Q" = D@ (30)
6@ =y-! éu
It is interesting to note that the need for block inversions along the diagonals can be eliminated if we use
the approximate Jacobian matrices of Eq. (24). Setting & = 1 and At = oo yields a Newton-like iteration.
Although a quadratic convergence of the Newton method cannot be achieved because of the approximate
factorization, a linear convergence can be demonstrated. That is why the term Newton-like instead of Newion
is used to distinguish the differences. The use of Newton-like iteration offers a practical advantage that one
does not have to find an optimal Courant number or time step to reduce the overall computer time. If
two-point one-sided differences are used, Eq. (22) reduces to
L=pl~ A\?‘—l,j,k - ﬁ:j—l,k - 6:,},;:-1
D =gl (31)

U=pl+ AL+ Bije + Cijan



where
b= p(A)+ 4(B) +5(C) (32)

In the inversion process, ;ff_l'j’k is multiplied by 6@:_1'1-.,:, for example. The algorithm permits scalar

diagonal inversions since

Diagonal(L or U) = (33)

[l e B e B e 3 <
OO O™ O
SO OO
[o=J ~ Y e B oo I an
WO OO O

The use of the true Jacobian matrices of Eq. (23), which might lead to a faster convergence rate, requires
block diagonal inversions and hence approximately doubles the computational work per iteration. Another
interesting feature of the present algorithm is that the scheme is completely vectorizable on i4+j+k = constant
oblique planes of sweep, which is illustrated in Fig. 1. This is achieved by reordering the three-dimensional

arrays into two-dimensional arrays, that is,
Q(ipoint, iplane) = @(i,j, k) (34)

where iplane is the serial number of the oblique plane to be swept, and ipoint is the address on that plane.

The present algorithm may also be amenable to parallel processing.

IV. Numerical Dissipation

A semidiscrete finite volume method is used to ensure the final converged solution be independent of
the time step and to avoid metric singularity problems. The finite volume method is based on the local flux

balance of each mesh cell. For example,

OE +0,F +0,G =

Eigyie—Ei g+ Fijae—Fj 3+ Gijess —Gijr-g (35)



A central difference scheme achieves the second order accuracy in the most efficient way when the flow
field is free of discontinuous solutions. However, numerical dissipation models are added to nondissipative
central difference schemes in order to suppress the tendency for odd and even point decoupling. Dissipation
models are often called filters since they work like low pass filters which damp out high frequency modes.

The dissipative flux d is added to the convective flux in a conservative manner.

(Ei+§,j.k - Ei—g,j,k + Fi,j+§,k - ﬁ.’,j-,g,k + @;,j,k+§ - éi,j,k—g)

—(di+§,j,k - d.'-l,-,j,k + d.’,j+§,k - d.',,'-g,k + d.',j,k+§ - di,j,k-g) (36)
For simplicity, d; 4.j,k 18 denoted by d;, 3 hereafter.

It has long been recognized that charateristic-based upwind-biased schemes can demonstrate crisp
resolution of discontinuities. This is especially so when the flux-difference splitting scheme replaces Godunov’s
exact solution of the Riemann problem with an approximate solution, while distinguishing between the
influence of forward and backward moving waves. High-order upwind schemes can be constructed by using
multipoint extrapolation formulas to estimate the numerical flux, or by adding higher-order dissipative
terms. In either case flux limiters are then added to control the signs of the coefficients of a semi-discrete
approximation to the hyperbolic system of equations. The dissipative coefficient for a system of equations
must be a matrix to meet the requirement of upwinding. It is sometimes necessary to add artificial dissipation
in the form of entropy correction to avoid instabilities. Considering the additional cost and reduced robustness
of the upwind-biased scheme when the grid lines are not aligned with strong shock waves,!! it seems that the
flux-limited dissipation model with scalar coefficients can be a practical alternative to upwind dissipation with
matrix coefficients, especially when the uncertainty of the solution due to a turbulence model is relatively

large.

In the flux-limited dissipation model, the dissipative flux is constructed by introducing flux limiters

into the high order terms instead of adding low order terms.

dipy = =0y yd(oirr)eir g — 264 + Y(0i)e;_4] (37)



where ¢ and o are flux limiting functions to limit antidiffusive fluxes

0if e <0
#o)=|ocif0<o<1
lifo>1
and
1
¥(o) = ¢(2)
Here,
gy = ei-%
e.-+§
and

vy = Qit1 — Qs
If we write 0 = %, then

#(o)a = minmod(a,b)

(38)

(39)

(40)

(41)

(42)

where minmod(a, b) is zero if a and b have opposite signs, and minmod(a, ) is the smaller of a and b if a

and b have the same sign.

a,-+% = ('Cn + '61'3.'+g)"(2):‘+-§

(43)

where the constant ko determines a threshold, and the constant %, is chosen to ensure that there is enough

dissipation to suppress numerical oscillations in the neighborhood of shock waves. r(Z) denotes the spectral

radius of the Jacobian matrix 4 and ¥;, 3 18 a sensor.

Vipy = maz(vigr, vi)

where

v; = maz(vP,vT)

(44)

(45)



Vi =| pivr — 2pi + pic1 | /(Pig1 + 2pi + pic1) (46)

v =T — 2T + Tim | [(Tigs + 2T3 + Ticy) (47)

Here p and T are the pressure and the temperature.

V. Results

The LU-SGS algorithm can be completely vectorized and its efficiency is demonstrated by the CENS3D
code on a Cray YMP supercomputer at NASA Ames Research Center. The CENS3D code requires only 9
psec per grid-point per iteration for the thin-layer option of the Navier-Stokes equations with an algebraic
turbulence model on a single processor at the sustained rate of 175 MFLOPS. Approximately 55%, 20%
and 20% of the computing time are spent for the implicit matrix operation, the numerical dissipation and
the evaluation of viscous fluxes respectively. It is interesting to note that the LU-SGS scheme requires less
computational work per iteration than some explicit schemes. Based on experience with INS3D-LU2!, an
incompressible flow code which employs the LU-SGS scheme and achieved 1.2 GFLOPS using 8 processors,36
the CENS3D is expected to perform very well on shared-memory multiple processors. The LU-SGS algorithm
has outperformed the existing implicit schemes on a massively parallel computer such as the Connection

Machine CM-2 in a recent study.??

In order to validate the new CENS3D code, calculations have been performed for a NACA64A010
wing. The thickness to chord ratio of the wing, whose aspect ratio is 4, has been modified to 10.6%. The
experiment was conducted in the RAE 8 x 8 foot wind tunnel by Mabey et al.3® The model was mounted on
a fuselage-like body to displace it slightly from the wind tunnel wall and its boundary layer. However, no
attempt has been made here to model the test section. A 151 x 39 x 39 C-H mesh (229,671 points) generated
by Chaderjian®® is used for the present calculation. Figure 2 shows a partial view of the computational
grid. The freestream conditions are Mach 0.8, Reynolds number 2.4 x 10%, and zero angle of attack. The
algebraic turbulence model by Baldwin and Lomax*® is employed for mathematical closure of the Reynolds-

averaged Navier-Stokes equations. Original coefficients are used except Cyi, the coefficient for Fy .z, is set



to 1 instead of 0.25 as done in Ref. 39. The y* values at the first mesh cells which are adjacent to the
wing surface near the midspan are about 2. The convergence history in Fig. 3 shows that the root-mean-
squared residual of the continuity equation drops 3 orders of magnitude in about 340 iterations or 12 CPU
minutes. Pressure contours are shown in Fig. 4. The computed pressure coefficients are compared with
experimental data and the numerical solution of Chaderjian3® in Figs. 5-7. His code uses a finite-difference
discretization, artificial dissipation using blended second and fourth differences, a diagonalized ADI scheme,
and the Baldwin-Lomax turbulence model. Figures 5-7 correspond to C, comparisons at 50%, 77%, and
94% semi-span stations respectively. Values at the leading and trailing edges are not available for plotting
because flow variables are located at cell centers. Overall agreements between the two numerical solutions
are seen to be good despite the differences in numerical formulation. The slight discrepancy between the
experimental data and the numerical solutions may be due to the effects of the fuselage-like body at the

wing root and the wind tunnel wall which are not modeled in the numerical simulations.

For additional validation of the code, transonic flow calculations have been carried out for a ONERA
M6 wing. A 289 x 50 x 44 C-H mesh (635,800 points) is used as a fine grid. The distance of the first grid point
from the wing surface is 1.0 x 10~% chord length of the root section. The freestream conditions are Mach
0.8395, Reynolds number 1.5 x 107, and 3.06° angle of attack. The Baldwin and Lomax turbulence model
is used again for the attached flow simulation. The residual drops to 3 orders in about 380 iterations or 38
minutes of CPU time on the fine grid. In the present implementation, implicit viscous terms are not included
to avoid the increase of computational work per iteration. To investigate the effect of this compromise on
the convergence rate, a grid-convergence study has been performed. Fig. 8 shows the convergence histories
on both fine grid and a 171 x 25 x 44 (188,100 points) coarse grid. Although the number of grid points to
resolve the viscous boundary layer is doubled, the convergence is seen to be slowed by only twenty percent.
Fig. 9 and Fig. 10 show a good agreement between experimental data*' and the pressure coefficients at 44%

and 65% semi-span stations computed on the fine grid.

Conclusions



A three-dimensional numerical method based on the LU-SGS implicit scheme in conjunction with
the flux-limited dissipation model is developed for simulating viscous turbulent compressible flows. Good
performance of the new testbed code is demonstrated on a Cray YMP computer. Despite its reasonably fast
convergence, the LU-SGS scheme requires very low computational time per iteration. The present three-
dimensional Navier-Stokes solution of a high Reynolds number flow using 636K grid points is obtained in 38

minutes.
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Parallel Computation of 3-D Navier-Stokes
Flowfields for Supersonic Vehicles

by
James S. Ryan

This project involved development and testing of CFD tools for
use on parallel computers. In the short term, this work supports
development of High Speed Civil Transport (HSCT) designs as part of
the High Performance Computing and Communications Program
(HPCCP) Grand Challenges. The long-range goal is to enable
teraflops-rate multidisciplinary optimization of aerospace vehicles.
A more complete description of both the program and the technical
results is given in the attached paper, James S. Ryan and Sisira
Weeratunga, ~“Parallel Computation of 3-D Navier-Stokes Flowfields
for Supersonic Vehicles,” AIAA Paper 93-0064, Reno, NV, January
1993.

Milestones

The following is the list of planned accomplishments from the
proposal, along with the work done to satisfy each of them:

1. Rebuild the essential features of the serial CNS code
around the parallel ARC3D algorithm developed by Sisira
Weeratunga. This will satisfy the HPCCP milestone for June
1992.

The I/O routines required for use of the code were completed
in the previous contract period. @The Baldwin-Lomax model was
parallelized, and include in the CFD code. A c-grid boundary
condition was added to the code, for cases where the cut lies in a
single processor.

Going beyond CNS capabilities, Weeratunga added Chimera-grid
capabilities to the code, and I used this new feature to compute flow
for a wing-body-nacelle case.

2. Validate the parallel CNS code using simple test cases
which have analytical or experimental data available.



F Initial testing showed identical numerical behavior to the
ARC3D algorithm on a Cray computer, so validation results from the
Cray should be applicable here. The following cases have been
computed to add confidence and demonstrate applicability to HSCT
cases.

Flat plate boundary layer cases were used to test the laminar
and turbulent capabilities. Results at Mach 2.0 match computational
and analytical results well. A wing-body Euler calculation showed
good agreement to available Cray results using the UPS space-
marching code.

3. Demonstrate the success of CNS on the Intel iPSC/860
by solving an HSCT wing-body case. The first case will use
a single zone grid, but multiple processors.

An Euler case completed as this contract period was beginning,
satisfied this item. The geometry was a modern supersonic transport
design. In addition, the Euler case was used to test the scalability of
the code, and a fine-grid version was run to provide better
validation. Results compared well with UPS results from the Cray Y-
MP. Another single-zone case treated the same body with turbulent
flow at a Reynolds number of 1 million based on body length.

4. Solve an HSCT wing-body case with multiple zones and
a finer grid. This will meet the HPCCP milestone for
January 1993.

The multiple-zone capability was tested by the addition of
engine nacelles to two HSCT geometries. The first case run was one
nacelle and the wing lower surface of a proprietary HSCT geometry.
In order to generate results on a less sensitive (but still proprietary)
geometry, generic nacelles were added to the existing wing-body
grid. Overset gridding was used, adding only about 3% overhead
relative to single-zone computations on the same grids.

5. Support development of an optimizing version of CNS.

As planned, this was a low-level effort, consisting mainly of
helping others learn to use the Intel parallel computer effectively.



Other Work

In addition to the purely technical work, considerable effort
was applied to disseminating results, and to exposing this work
within the HPCC program. This resulted in the following
presentations and contributions to presentations made by others:

November 1991:

. Provided a graphic representing my wing-body results and
computational rates to Tom Edwards for use in a review for Ron
Bailey.  Bailey responded favorably to the results, which were
possibly the first 3-D external flow calculations on the massively
parallel machines. He suggested sending the results to Washington.

. Presented my results from tests of the Concurrent File System
(CFS) on the iPSC/860 to a Parallel I/O Special Interest Group at
Supercomputing '91 in Albuquerque, New Mexico. The presentation
was well received by the Intel personnel and other researchers
present.

December 1991:;

. Completed production of a video explaining my CFD work on
the Intel computer, and its place in HPCCP. The content was directed
at interested non-technical viewers, such as congressmen who would
be shown the video as part of the budgeting process. The video went
to Washington with Ken Stevens for review within NASA. Portions
were included in a professionally produced video called "Grand
Challenges 1993."

January 1992:

. Presented a review of the Branch's work on the HPCCP HSCT
Grand Challenge to Lee Holcomb of NASA Headquarters.

February 1992:
. Provided print and transparency graphics to Terry Holst, Ken

Stevens, and Tom Lasinski. These HPCCP-related graphics depicted
my HSCT test-case solution on the Intel iPSC/860.



. Provided copies of my CFS I/O paper to Intel employees at
Ames and at Caltech.

May 1992:

. Provided graphics of wing-body Euler results to Jolen Flores,
with additional information for use by Paul Kutler.

. Presented recent results to the local CAS applications group,
and prepared slides for a more extensive presentation in Cleveland
next month.

June 1992:

. Attended the Computational Aerosciences Industry Briefing at
Cleveland, Ohio. Presented a 20 minute (plus questions) talk on
recent work in the use of parallel computers for Navier-Stokes CFD
computations.

August 1992:

. Presented a talk entitled ““Parallel Navier-Stokes Computation
of Supersonic Vehicle Flowfields,” at the NASA Computational
Aerosciences Conference, August 18-20, 1992. A compendium of
abstracts was published.

. Prepared materials for inclusion in the HPCCP annual report
being prepared by Lee Holcomb at NASA headquarters.

October 1992:

. Sent out a 427 form, proposing to present the content of AIAA
Paper 93-0064 at the "Parallel CFD '93" Conference in Paris, France,
in May of 1993. This 427 will probably be rejected, on grounds of
economic sensitivity of the technology.



AlAA 93-0064

Parallel Computation of 3-D Navier-Stokes
Flowfields for Supersonic Vehicles

J. S. Ryan
MCAT Institute

S. K. Weeratunga
Computer Sciences Corporation

31st Aerospace Sciences
Meeting & Exhibit
January 11-14, 1993/ Reno, NV

For permission to copy or republish, contact the American Institute ot Aeronautics and Astronautics
370 L’'Entant Promenade, S.W., Washington, D.C. 20024



PARALLEL COMPUTATION OF 3-D NAVIER-STOKES
FLOWFIELDS FOR SUPERSONIC VEHICLES

James S. Ryan® and Sisira Weeratungaf
NASA Ames Research Center
Moffett Field, California

Abstract

Multidisciplinary design optimization of aircraft
will require unprecedented capabilities of both analy-
sis software and computer hardware. The speed and
accuracy of the analysis will depend heavily on the
computational fluid dynamics (CFD) module which is
used. A new CFD module has been developed to com-
bine the robust accuracy of conventional codes with the
ability to run on parallel architectures. This is achieved
by parallelizing the ARC3D algorithm, a central-differ-
enced Navier-Stokes method, on the Intel iPSC/860.
The computed solutions are identical to those from
conventional machines. Computational speed on 64
processors is comparable to the rate on one Cray Y-
MP processor, and will increase as new generations of
parallel computers become available.

Objective and Motivation

New aerospace vehicles must meet higher stan-
dards than ever before, in order to provide techni-
cal and economic advantages over older generations of
aircraft. They must offer low maintenance costs and
economical fuel consumption. Lower limits will be en-
forced for pollutant emissions and airport noise. On
many routes, supersonic flight may provide a compet-
itive advantage, leading to interest in a High Speed
Civil Transport (HSCT). For such a transport aircraft,
supersonic flight must be combined with environmen-
tally acceptable sonic boom levels. Additionally, effi-
cient subsonic cruise must be possible, to ensure access
of the HSCT to areas where supersonic flight may be
prohibited. In order to design such an aircraft, it is
no longer adequate to consider external aerodynamics,
propulsion, structures, and controls in isolation. The
simulations used to evaluate a design must take into ac-
count several of these disciplines for each flight regime,
from takeoff and landing, to transonic operation, to
supersonic cruise. Numerical optimizers will use a series
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of such simulations to find optimal values for large sets
of design parameters.

These multidisciplinary simulations will require
computational power beyond the reach of traditional
vector supercomputer architectures. The High Per-
formance Computing and Communications Program
(HPCCP) has selected the HSCT as one of several
Grand Challenges, which will be used to explore the
power of parallel computers, while simultaneously con-
tributing to the solution of problems of scientific, tech-
nical, and economic importance. As a step toward mul-
tidisciplinary computation on highly parallel comput-
ers, a parallel CFD code has been developed. This CFD
module is designed for integration with modules provid-
ing analysis capabilities for structures, propulsion, and
other disciplines, to create a complete multidisciplinary
design tool.

This project also provides feedback to the de-
velopers of parallel architectures, hardware, operating
systems, and compilers. The practical experience of
building aerospace design tools on parallel computers
can encourage and guide the development of the next
generation of parallel hardware and software.

Technical Approach

The present work focuses on the development of
a versatile computational fluid dynamics module for
High Speed Civil Transport (HSCT) flow fields. Bun-
ing’s “Overflow!” implementation of ARC3D? serves as
the basis for the parallel version described in the next
section. By basing the flow solver on existing, well-
proven serial algorithms, the uncertainties surrounding
a totally new algorithm are avoided. The new par-
allel version of ARC3D gives results which are iden-
tical, aside from roundoff error, to those from Cray
versions.

Complex vehicle designs are often difficult to grid
in a single zone. Building a usable single-zone struc-
tured grid around a wing-body with nacelles is diffi-
cult. With the addition of control surfaces and an em-
pennage, the problem becomes practically impossible.
This problem is alleviated by gridding components of
the aircraft separately, either in a patched or overset
grid approach. The present code includes both of these




capabilities. The patched grid approach is based on
the successful methods used in such codes as TNS?
and CNS,* although the parallel implementation re-
quired complete re-coding. The overset, or Chimera$,
approach is based on the “Overflow” code, and uses
input from either Pegsus 4.0%, or Meakin's DCF3D7
code. Each zone is built so that its outermost points
correspond to interior regions of the adjacent zones.
The gridding of each zone is independent, except in the
overlap areas of patched grids. The implementation of
the Chimera grids is described in a later section.

In addition to the usual physical boundary con-
ditions, “boundary condition coupling” will serve to
integrate the CFD module with other disciplines. For
example, pressures from the CFD module can provide
input to a structures code, which will feed back a modi-
fied surface shape to the CFD code. This surface shape
requires modification of the flowfield grid in the CFD
problem. For unsteady problems, the surface velocity
becomes one of the boundary conditions for the next
flow solver iteration. Each discipline can provide up-
dated boundary conditions for the others, as often as
Dnecessary to provide time accuracy in each part of the
problem.

Algorithm Implementation

The Intel iPSC/860 System

The Intel iPSC/860 system is an aggregate of inter-
connected processor nodes. Each processor, or compu-
tational node, consists of an Intel i860 microprocessor
with memory and inter-node communication compo-
nents. The iPSC/860 at NASA Ames Research Cen-
ter consists of 128 such nodes, each with 8 Mbytes of
memory. The i860 is a 40 MHz reduced instruction
set (RISC) microprocessor chip with a theoretical peak
execution rate of 32 MIPS integer performance and
60 Mflops 64-bit floating-point performance. The 128
node iPSC/860 delivers an aggregate peak performance
of over 7 Gflops on 64-bit data and supports a total
of one Gbyte of random access memory. These peak
performance rates are based on ideal conditions with
regard to the mix of instructions, cache utilization,
pipelining, data alignment etc. Such optimal condi-
tions do not occur in practical applications such as
CFD.

The processors in the 128 node iPSC/860 are in-
terconnected by a 7-dimensional hypercube commu-
nication network. Each computational node inter-
faces with the network through a dedicated commu-
nication processor called the Direct Connect Module
(DCM). The DCM can supervise up to 8 full duplex
serial channels simultaneously with a peak data transfer
rate of 2.8 Mbytes per second per channel. It also
provides hardware by-pass switching (i.e., worm-hole
routing) for every node in the system. As a result,
messages can pass equally quickly between adjacent

nodes and nodes at the opposite corners of the in-
terconnection network, provided there is no link con-
tention. Thus, it effectively emulates a fully connected
network, with very little penalty for non-local commu-
nication.

Attached to the communication network are 10 I/0
nodes, each of which is an Intel 80386 processor with
approximately 700 Mbytes of disk space. These I/0
nodes form the Concurrent File System (CFS) with
a total capacity of 7 Gbytes. The disks in the CFS
are directly accessible to the computational nodes over
the interconnection network. The peak data trans-
fer rate between a single computational node and the
CFS is about 1.5 Mbytes per second. This translates
into a peak transfer rate of approximately 15 Mb/sec.
However, the actual transfer rates realized in practical
computations are much lower due to contention for /O
nodes, network congestion and inefficient cache utiliza-
tion.

The 1PSC/860 is controlled by an intermediate
host computer, referred to as the System Resource
Manager (SRM). The SRM serves as the machine’s
interface to the outside world by providing such func-
tions as system resource management and external net-
work access. Each of the computational nodes in the
iPSC/860 system runs a simplified operating system
kernel known as NX/2 that supervises process execu-
tion and supports buffered, queued message passing
over the interconnection network with other computa-
tional nodes, I/O nodes and the SRM.

In distributed memory machines such as the iPSC/
860, there is no globally shared, directly addressable
memory. Instead, each processor has a private address
space in a private memory. As a result, each proces-
sor runs its own version of the program and data is
communicated between processors by means of a “send-
receive” protocol explicitly coded in each program. In
addition to the sharing of information, this mechanism
is also the primary means of synchronization between
processors. Consequently, computation on distributed
memory machines can be visualized as a system of
communicating sequential processes. The messages ex-
changed have relatively high communication latencies
(approximately 65-150 microseconds) and low commu-
nication bandwidths. Hence, there is a significant per-
formance penalty for moving data between processors
frequently and/or in large quantities.

Parallel Implementation Considerations

The goal of the parallel implementation is the ex-
traction of maximum parallelism to minimize the ex-
ecution time of the application on a given number of
processors. However, there are several different types
of overheads associated with a parallel implementation.
These include communication overhead, data depen-
dency delays, load imbalance, arithmetic overhead, and
memory overhead. Here, the arithmetic and memory



overheads refer to the extra arithmetic operations and
memory needed by the parallel implementation when
compared with the best equivalent serial implementa-
tion. While the first four types of overheads lead to
performance degradation, the memory overhead may
limit the size of the problem that can be run on a given
system. In practice, minimizing all these overheads si-
multaneously is difficult. Thus, most practical parallel
implementations require the developer to make compro-
mises with regard to different types of overheads with
the overall goal of achieving a near-minimum execution
time, subject to a reasonable programming effort.

A given application consists of several different, in-
dependent algorithmic phases that must be performed
in a prescribed sequential order. In addition, the degree
of parallelism and the type of data dependencies associ-
ated with each of these subtasks can vary widely. Here
the degree of parallelism refers to the order of mag-
nitude of the number of finest granularity concurrent
subtasks.

The version of ARC3D implemented in this study
is the diagonal form of the Beam and Warming implicit
approximate factorization algorithm for the solution
of the Reynolds-averaged Navier-Stokes equations?. A
single time step of this implicit time integration scheme
can be considered to comprise six different types of
subtasks: (a) enforcement of boundary conditions, (b)
formation of right hand side vector (RHS) involving
Euler, viscous and smoothing terms, (c) block-diagonal
matrix-vector multiplications involving (5x5) elemen-
tal similarity transformation matrices, (d) formation
of scalar pentadiagonal systems of equations involving
Euler, viscous and smoothing terms, (e) solution of
multiple, independent systems of scalar pentadiagonal
equations and (f) solution update. In the following
section, we describe each of these tasks with respect
to their impact on the parallel implementation. In
this discussion, N refers to a typical dimension of the
computational domain.

The degree of extractable parallelism associated
with subtask (a) is O(N?). In addition, since the en-
forcement of boundary conditions is done only at the
boundaries of the computational domain, the distribu-
tion of load is not homogeneous. The severity of this
load imbalance is dependent on the mix of boundary
conditions used in the application. While most bound-
ary conditions have only local spatial data dependen-
cies, there are others that contain non-local spatial data
dependencies. Examples of such boundary conditions
are C-grid flow-through conditions, periodic/axis con-
ditions and evaluation of surface pressure based on nor-
mal momentum equations. Enforcement of such non-
local boundary conditions may require inter-processor
communication and could occupy a significant fraction
of run time. The only mitigating factor is that in most
practical problems, the ratio of boundary to interior
points is small.

The subtasks of type (b), (c), (d) and (f) are typ-
ified by O(N3) degree of extractable parallelism with
homogeneous distribution of the computational load.
In addition, the spatial data dependencies associated
with these tasks are highly localized. They are either
nearest or next-to-nearest neighbor for second-order
spatial accuracy.

The sequentially optimum algorithm for subtask
(e) involves second-order recursion. This eliminates the
possibility of extracting any parallelism in the solution
of a single, scalar pentadiagonal system. Therefore, to
extract any concurrency in the solution of such a system
requires that the sequential algorithm be replaced by
one with exploitable parallelism. Most such algorithms
incur substantial arithmetic and communication over-
heads and may not reduce the execution time signifi-
cantly. However, subtask (e) involves the solution of
multiple, independent systems of scalar pentadiagonal
equations in each coordinate direction, with the multi-
plicity being O(N?). This exposes an easily extractable
O(N?) degree of parallelism. The degree of extractable
parallelism can be further enhanced by using the con-
cept of pipelined data parallel computation. This is one
of the approaches used in this study.

Data Partitioning in ARC3D

Analysis of the extractable parallelism of various
subtasks of ARC3D in the previous section indicates
that the finest level of subtask granularity for most
computations is at the grid-point level. The exception
is for the subtasks of type (e), where the finest level of
granularity is at the level of a group of grid points in
a given coordinate direction. Therefore, it is natural
to decompose the data space of ARC3D at the level of
group of grid points in each coordinate direction. This
is referred to as grid partitioning. The idea is to map
the subdomains (i.e., processes) so created onto the
processors in such a way that the distribution of grid
points leads to a nearly balanced load of computation
and communication. It is also desirable to maintain
the spatial locality of the grid structure in order to
minimize the amount of communication.

In the case of structured grids, as used in ARC3D,
this is easily achieved by partitioning the computa-
tional domain into logically congruent, nearly equal-
sized rectangular parallelepiped-shaped subdomains.
Since the subgrids created by this partitioning are
themselves structured, the nodal programs written for
the individual processors will bear a close resemblance
to the program structure of a sequential implemen-
tation. The parallel implementations based on such
partitioning schemes posses the following characteris-
tics: (1) the underlying numerical algorithms are not
changed, i.e., the parallel implementation give exactly
the same results as the sequential version; (2) proces-
sors are programmed homogeneously, i.e., the Single
Program, Multiple Data (SPMD) model is used; (3)



implementations are independent of the topology of the
interconnection network and the number of computa-
tional nodes (provided the local memory capacity is
sufficient for a problem of a given size); (4) communi-
cation patterns for data exchange among processors are
simplified; (5) computational and communication load
are equally distributed among the processors for tasks
with homogeneous, grid-point level parallelism.

In this study, one grid subdomain is assigned to
each of the processors. Such a partitioning scheme is
referred to as a uni-partitioning scheme. The simplest
and most commonly used structured grid partitioning
scheme slices the computational domain along planes
normal to each of the coordinate directions. As a result,
the maximum number of partitions in a given coordi-
nate direction is limited to the number of grid points
in that direction. When the computational domain is
sliced only along one coordinate direction, it is referred
to as a 1-D partitioning. Similarly, slicing the grid in
two or three coordinate directions gives a 2-D or 3-D
partitioning scheme, respectively.

The highest dimensionality of the partitioning
scheme that can be used for a given grid-oriented algo-
rithm depends on the degree of extractable parallelism
of that algorithm. The optimum partitioning depends
on the algorithm’s computational and communication
requirements, machine architectural features, and the
number of grid points in each coordinate direction. For
a problem of fixed size, use of higher dimensional parti-
tioning, if feasible, facilitates the use of a larger number
of processors.

Implementation Details of ARC3D

We have implemented ARC3D on the iPSC/860
by using 3-D uni-partitioning of the computational do-
main. However, 1-D and 2-D uni-partitionings are sub-
sets of this implementation. Each subdomain is as-
signed to a computational node of the iPSC/860. This
assignment can be either algebraic (i.e., i-th subdomain
to the i-th processor) or it can be in such a way that
neighboring subdomains are mapped onto processors
that are directly connected in the hypercube communi-
cation topology. Such a mapping is feasible for all three
types of partitionings because the hypercube topology
allows the embedding of rings, 2-D and 3-D meshes
through the binary reflected Gray code. One advantage
of a such an assignment scheme over a naive asgignment
is that it tends to minimize the distances traveled by the
messages and the potential for network link contention,
at least in data exchanges involving neighboring sub-
domains. However, our experimental performance data
do not show any significant advantage for this type of
process-to-processor mapping scheme. This appears to
partially substantiate Intel’s claims regarding DCM’s
ability to mimic the appearance of a fully-connected
network.

Under this statically determined uni-partitioning

scheme, the solution variables held in each subdomain
are computed by their associated computational node.
During the RHS evaluation, interior faces of a sub-
domain require solution values held by the adjacent
subdomains. A given subdomain may require such
data from up to six other subdomains. Instead of
exchanging these values exactly at the instant they
are required, the data are stored in so-called overlap
areas by allocating storage for one extra grid point
in each of the six directions of the subdomain com-
putational grid. This allows for the exchange of in-
ternal boundary data by processors holding adjacent
subdomains via a few, relatively long messages. As
a result, the cost of latency associated with Message
passing is minimized, resulting in reduced communi-
cation overhead. However, the allocation of storage
for such overlap areas and the need for using equally
long message buffers during the data exchange pro-
cess results in substantial memory overhead. The in-
troduction of such overlap areas leads to an imple-
mentation equivalent to the sequential one, since a
strict coherency is maintained between data in the
overlap areas and those on the subdomain internal
boundaries. At first glance it appears as if the pres-
ence of fourth-difference dissipation terms would re-
quire two extra grid points in each of the six direc-
tions for the overlap areas. However, by exchang-
ing the second-differences during the computation of
smoothing terms, the need for an extra layer of grid
points in the overlap areas is avoided. The data depen-
dency delay overhead in these computations is limited
to that associated with the exchange of data in the
overlap areas. The primary reason for such delays is
the load imbalances associated with subtasks of type
(a) and (e). In addition, there is an arithmetic over-
head, due to the redundant computation of various
flux data in the overlap areas as well as a commu-
nication overhead due to exchange of data in those
areas,

As mentioned earlier, the solution of the scalar
pentadiagonal systems induces global data dependen-
cies. There are a variety of concurrent algorithms
available for this task. We have considered three such
algorithms: (1) Complete-exchange based implemen-
tations (CE-GE), (2) Pipelined Gaussian elimination
(PGE), and (3) Sub-structured Gaussian elimination
followed by solution of the reduced system via bal-
anced odd-even cyclic reduction (SGE-BCR). The com-
plete exchange or global transpose based implementa-
tions are limited to O(N?) degree of extractable par-
allelism but contain no arithmetic overhead. Also,
such implementations are typically associated with high
memory and communication overhead. The inter-
processor communication is characterized by a rela-
tively small number of messages of length O(N?). The
pipelined (both one-way and two-way) Gaussian elim-
ination algorithms, while exhibiting O(NV3) degree of



parallelism and no arithmetic overhead, suffer from
high memory overhead and processor idling during
pipeline filling and draining. In addition, they are
characterized by a large number of relatively short
messages that may lead to inefficiencies on systems
with high message latencies. In contrast, the sub-
structured Gaussian elimination based algorithms ex-
hibit O(N?) degree of readily extractable parallelism,
but suffer from relatively high arithmetic and memory
overhead.

Under the uni-partitioning schemes, subdomains
containing external boundary faces are held only by a
subset of the processors. Therefore task (a) is processed
only by those nodes holding those faces, while others
may be idle. The severity of this load imbalance is
short-lived for most common types of boundary condi-
tions needed in practical flow simulations.

The Baldwin-Lomax turbulence model® is imple-
mented in the current code. This model requires search-
ing in the wall-normal direction for the maxima of cer-
tain flow parameters. In the parallel version this often
requires searching across several processors. The model
finds local maxima in each processor and compares
values from all applicable processors, in order to give
eddy viscosity values which are unaffected by the parti-
tioning of the grid. The searches are performed largely
in parallel, so that the computational time consumed
i minimized. In flat plate test cases, searching only
the points assigned to one processor added 5 percent
to the total computational time. Searching through 4
processors in the wall-normal direction added only 3
percent more time.

Implementation of Composite Grid Schemes

The overset grids used in the Chimera approach
result in the embedding of both outer boundaries and
solid body regions of one grid within the computa-
tional domains of other grids. The embedding of the
solid body regions requires that certain grid points be
blanked out within some neighborhood of the solid
body region. These points are referred to as hole
points. The grid points that lie in the fringes of this
blanked-out region form an artificial interior boundary
and serve to impose the effect of the embedded solid
body region upon the grid. Consequently, the inter-grid
boundaries of a composite grid are formed by the union
of the embedded outer boundaries of the minor grids
and the artificial interior boundaries of the blanked-out
regions. In overset grid schemes, the effect of one grid
is imposed upon the other by interpolating intergrid
boundary data between them. In practice, this process
is carried out at the end of each time step on each grid
and is referred to as intergrid communication.

The flow field data needed to update the intergrid
boundary points is interpolated from the solutions in
the neighboring grids. Most interpolation schemes seek
data from the nearest hexahedral computational cell in

the overlap region. Such cells are referred to as donor
cells. Therefore, to successfully carry out the intergrid
communication process requires the identification of
three types of grid points in all component grids: the
hole points, the intergrid boundary points, and the
donor cells. Currently, this information is provided as
input by either Pegsus or DCF3D in a preprocessing
step.

On conventional supercomputers, each component
grid of the composite grid is generally treated sequen-
tially, while the other components reside in a secondary
storage device such as the SSD on Cray Y-MP. The
iPSC/860 implementation of the overset grid scheme is
based on the zonal decomposition approach. Interzone
communication is accomplished through the inter-cube
communication facility developed by Barszcz®. The
zonal decomposition exploits the functional parallelism
among multiple overlapping grids, and the data paral-
lelism within each individual grid. As a result, all com-
ponent grids are computed concurrently on different
groups of processors with independent spatial data de-
composition within each grid. The data partitioning is
carried out in a manner that optimizes the performance
of the parallelized implicit flow solver for each grid.
The number of processors assigned to each component
grid is decided on the basis of the computational load
associated with the flow solver used for that grid. Given
a fixed number of processors, this approach allows good
static load balancing across the clusters of processors
involved in the flow solver phase.

The intergrid data interpolation and communi-
cation is donme concurrently, through a loosely syn-
chronous approach. At the end of a time step, proces-
sors holding donor-cells in each component grid send
the interpolated flow field data to the appropriate pro-
cessors of the other component grids. Each processor
proceeds to the computations of the next time step of
the flow solver as soon as its intergrid communication
phase is completed. A distributed intergrid communi-
cation data structure is used to minimize the memory
overhead. No attempt is made to equidistribute the
intergrid boundary points or the donor cells associated
with each grid. Thus, during intergrid communication,
there are likely to be significant load imbalances within
each group of processors as well as across the groups of
processors. This load imbalance is tolerable, as long as
the time spent on intergrid communication process is a
relatively small fraction of the time required to compute
a single time step of the flow solver. The timing data
for the composite grid configurations investigated so far
indicate that the intergrid communication overhead is
less than 3%.

1/O Considerations

Input and output of grid and solution files are usu-
ally minor considerations on conventional computers.
Methods for I/O are straightforward, and practically
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Figure 1. Schematic of a 32 point grid dis-
tributed among 4 nodes. To reassemble the
grid in a single file requires 16 writes to the
CFS.

no CPU time is consumed, since idle processors become
available to other users. On the iPSC/860, processors
which are waiting for [/O are still dedicated to the
calling process, so any idle CPU time is lost. Also,
the parallel aspects of I/O between multiple processors
and multiple disks add to the complexity of the opera-
tion. During processing, the data representing the flow
solution is distributed across many processors. When
that data is written to the disks of the Concurrent File
System (CFS), it is often useful to store the data as a
single array of values, rather than in pieces which corre-
spond to each processor. This allows the solution to be
used for restart on any number of processors, and allows
postprocessing on workstations without re-ordering the
data. In general, this requires each processor to write
small amounts of data to many separate locations on
the disks, to order the data correctly. This is illustrated
for a very small grid in Fig. 1. These numerous write
operations result in inefficient use of the cacheing ca-
pability of the I/O subsystem, and contribute to delays
due to contention for the I/O nodes.

In early testing of the I/O routines, up to 5 Mb/sec
was achieved from 16 processors to a single output file.
For larger numbers of processors, the rates actually
drop. Several tests were made with a 402,000-point
grid, which requires a minimum of 32 processors. Ad-
ditional processors were included either by distributing
the single grid over more processors, or by running
multiple 32-processor cases in parallel. Solution files
were written in two ways: either in a single file as
described above, or as separate files containing the data
from each processor. The multiple-file form of output
is faster, and is used when a solution will be restarted
on the same number of processors. The results are
summarized in Fig. 2, which shows that the combined
I/O rate from all processors never exceeds 2 Mb/sec
for these cases. The transfer of a single-file CFD solu-
tion from the processors to CFS files requires from 4
to 26 times as long as an iteration of the flow solver.
Solution output to separate files from each processor is

2.0
-.- 1 sohution. Multi-file
1 5_ - o= | solution, l flis
- L s+ Multi-soluion, Muiti-flle
S —a- Mult-solution. | flis sach
é 1.01
S
0.54 ‘N“l‘;:;:: _______
----- Rilzze—ae.. g
0.0 T
32 64 128
Processors
Figure 2. Transfer rates for 402,000-point

CFD solution files. The solutions are output
either one file per solution, or one file per pro-
cessor (multi-file). Multi-solution indicates
that several solutions were output, each from
a separate group of 32 processors.

somewhat faster, requiring from 1 to 8 times as long as
a solver iteration.

Data transfer rates from the processors to the CFS
are acceptable for steady state problems, which run
hundreds of iterations before a solution must be stored.
For unsteady problems, solutions must be stored fre-
quently and I/O will consume a substantial fraction of
the total CPU time for the problem. As these problems
become more common, and as the computational speed
of parallel computers increases, the [/O subsystems will
have to improve rapidly.

Computational Results

The new parallel code was tested on a simple
square-duct case, and found to give identical results
to the serial version of the algorithm. Since the
code behaves identically, validation work done with
the ARC3D algorithm on serial machines is applicable
to the new code as well. Several solutions produced
with the new parallel code serve to add confidence
in the parallel implementation, and to demonstrate
the applicability of the code to the High Speed Civil
Transport (HSCT). After the test cases are described,
performance results are given, along with an evaluation
of the current levels of performance.

The first results described are validation cases, for
which there are some analytical or numerical results
available for comparison. These include laminar and
turbulent flat-plate boundary layers, and an Euler com-
putation about a wing-body. Additional demonstration
calculations include a Navier-Stokes solution about the
wing-body, and a multiple zone calculation of the wing-
body with generic engine nacelles added.
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Figure 3. Temperature in the laminar bound-
ary Layer 1 inch from the leading edge of
a flat plate at Re = 159,900, M, = 2.5,
Too = 216.5K, Tyan = 273K, Pr=1.0
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Figure 4. Turbulent boundary layer 1 meter
from the leading edge of a flat plate at Re =
1,000,000, My, = 2.0, T = 275K, Tyau =
370K, Pr=10.72

Validation Cases

Two supersonic flat plate boundary layer cases
show excellent agreement with serial codes. Fig. 3
shows the temperature profile in a laminar boundary
layer over an isothermal flat plate. An analytical solu-
tion is plotted, as well as the results from the F3D!°
flux-split algorithm, which was run on a Cray Y-MP.
The points resolving the boundary layer in each case
extended across several processors in both the stream-
wise and wall-normal directions, providing an example
of how the flow solver and boundary layer model are
unaffected by processor boundaries. A boundary layer
profile for the turbulent case is shown in Fig. 4. It
compares well with F3D results from the Cray.

The first three-dimensional test case was an Euler
solution about a modern HSCT wing-body. Nearly
one-half million points were used in a 67x60x112 grid.
The grid was generated in crossflow planes, so that
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Figure 5. Upper surface grid on the wing-
body. Only half of the points are shown in
each direction.
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Figure 6. A crossflow plane of the volume
grid at about 60 percent of body length. The
Euler grid is on the left. The grid on the right
has been modified to improve boundary layer
resolution for turbulent cases. Only half of the
points are shown in each direction.

a parabolized code, UPS!!, could easily be used for
comparison. Each 67x60 point crossflow plane was
a C-mesh covering half of the wing-body, plus one
reflected plane. Fig. 5 shows the surface grid in a
planform view, and Fig. 6 shows a crossflow plane of
the volume grid. In order to distribute points among
32 processors, the grid was divided into 8 partitions in
the streamwise direction, and 4 partitions in the body-
normal direction. No fewer than 32 nodes could be used
for this case, due to memory limitations.

The case was run with a freestream Mach num-
ber of 2.1, and an angle of attack of 4.75°. This is
approximately the angle of attack for maximum lift-
to-drag ratio. The converged solution was compared
to the UPS results. Surface pressures, such as the
centerline pressures shown in Fig. 7, compare well.
The differences between the solutions are primarily due
to differences in the way the two codes resolve the
flow. The UPS code adds many intermediate planes
in the streamwise direction, enhancing resolution, but
introducing some differences due to interpolation.
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Figure 7. Pressures on the wing-body center-
line.

Demonstration Calculations

The wing-body has been solved as a Navier-Stokes

calculation, with the Baldwin-Lomax turbulence model.

This case demonstrates the Navier-Stokes capability,
but does not validate it, since only Euler solutions were
used with this geometry on serial computers.

The case was run at the same Mach number and
angle of attack as the Euler case, and a Reynolds num-
ber based on body length of one million. In actual
flight, the vehicle would have a Reynolds number on
the order of 5.0 x 10% per meter. The lower number
used here is reasonable for wind tunnel models, and
allows the number of grid points to be kept small. A
very simple grid adaption approach was used to modify
the Euler grid to give a Y-plus of about 0.5 everywhere
on the body. Y-plus is defined here as y+ = (pUsAy/u),
where U, is the flow speed tangent to the body, and Ay
is the normal distance from the wall to the adjacent
grid point. The grid was also modified to move the
outer boundary inward, shifting unneeded points from
outside the shock into the active flowfield. The adap-
tion was repeated twice, giving an improved grid with
negligible computational cost. The grid can be seen on
the right side of Fig. 6.

Lift and drag results for the wing-body are shown
in Figs. 8 and 9. The lift-to-drag ratio for the turbulent
Navier-Stokes case is about three times lower than for
the Euler case. The difference between the two is
exaggerated by the low Reynolds number used in the
test case, and in fact the turbulent case has the same
lift-to-drag ratio as the Euler case if skin friction drag
is ignored.

The final demonstration calculation is based on the
Euler wing-body case. Grids for two generic engine
nacelles were generated, and placed under the wing-
body to demonstrate the overset-grid capability. Each
nacelle was treated with two grids: one for the exte-
tior, and another to allow flow through the interior.
The two grids about each nacelle exchange information

Cumulative Lift Coefficient

X/L Distance

Figure 8. Lift coefficient results from Euler,
laminar and turbulent cases on the wing-body.
Mx = 2.1, =4.75°, Re = 1,000, 000

Cumulative Drag Coefficient

X/L Distance

Figure 9. Drag coefficient results from Euler,
laminar and turbulent cases on the wing-body.
My =21,0=475° Re = 1,000, 000

with each other and with the wing-body grid, as shown
for example in Fig. 10. The planes shown are nei-
ther flat nor coincident, but they are close enough to
serve as a 2-D illustration of the Chimera grid scheme,
which is fully three dimensional. The planes shown
are upstream of the nacelle, so no points are cut out
of the wing-body grid at that point. The nacelle lip
has zero thickness, and there is no diverter in this
calculation.

The convergence rate of the five-zone wing-body-
nacelle computation was nearly the same as for the
wing-body alone. Since six additional processors han-
dled computations for the nacelle grids, the time per
iteration increased by only about 2.5 percent, which
represents the cost of the Chimera interpolation and
information exchange. The lift increment due to the
nacelles was calculated, but proved to be negligible for
this case. The changes in pressure on the wing lower
surface are shown in Fig. 11.
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Figure 10. Grid interfaces just upstream of the inboard nacelle. A: Wing-body field grid receives
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Figure 11. Pressure increments due to to
flow-through nacelles. “4” or “” indicates
pressure above or below the wing-body case.

Performance

In order to support multidisciplinary optimization
with practical turnaround times for design work, the
code for analysis of each discipline must run quickly
and scale efficiently on parallel machines. This sec-
tion describes several aspects of performance, including
single-processor computational rates, grid partitioning

strategy, scalability, and choice of solution method for
the pentadiagonal systems. All performance data re-
ported are for 64-bit arithmetic and implementations
based entirely on FORTRAN.

On a single i860 node, the sustained performance
for ARC3D is about 6 MFLOPS, or 10% of the peak
performance of the microprocessor. The primary cause
of this degradation is the inadequate bandwidth and
high latency for data movement between the chip’s
floating point registers and external memory. Another
factor is the high cost of floating point divide operations
and intrinsic functions such as square roots. The lack
of efficient scheduling and pipelining of instructions by
the still-evolving Fortran compilers also reduces com-
putational rates. All megaflops rates quoted are cal-
culated by comparing computing time per iteration on
the iPSC/860 to the time on a Cray Y-MP. Operations
counts from the Cray Hardware Performance Monitor
are used. The actual number of floating point opera-
tions on the parallel machine is somewhat higher.

The scalability of the CFD module has been mea-
sured over a wide range of processor counts and grid
sizes. The most favorable way of measuring scalability
is to assume that the problem size will scale up with the
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Figure 13. Performance of parallel ARC3D
on the iPSC/860. Effect of spreading fixed-
sized problems across additional processors.
Cray Y-MP single-processor performance on
the various grids is also shown.

number of processors available. The present code can
compute up to about 14,000 grid points on each proces-
sor, given 8 Mb of memory per processor. Keeping the
number of points near this maximum gives the results
shown in Fig. 12. The “ideal speedup” curve indicates
the speedup calculated by simply multiplying the com-
putational rate of the CFD code on one processor by
the number of processors. Let efficiency be the ratio of
the actual processing rate to the “ideal speedup” case.
By the time 128 processors are in use, efficiency has
dropped to 70 percent, but the drop is gradual. At this
point the code is operating at 527 megaflops. The cause
of this performance degradation is the various types
of parallel implementation overheads identified earlier.
The cost associated with some of these overheads as
a fraction of the total computational cost appears to
grow at a superlinear rate as the total number of grid
points and the number of processors increases.

In practice, grid sizes do not scale up indefinitely.
Fig. 13 shows how performance varies when the number
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iPSC/860 Cray-YMP
Prob. Size No. of Proc. Time/step
Algorithm | 32 64 | 128 |((MFLOPS)
CE-GE 0.23 |0.14 |0.11
(120) |(196) |(251)
(24x24x24) PGE 0.29 |0.19 |0.13 | 0.22 sec.
(94) |(142) [(201) (123)
SGE-BCR |0.47 [0.32 [0.22
(58) [ (84) [(126)
CE-GE |[1.00 |0.52 |0.34
(136) |(260) |(401)
(40x40x40) PGE 1.13 [0.67 [ 0.44 | 0.875 sec.
(120) |(202) {(310) (155)
SGE-BCR |1.63 {0.99 | 0.64
(83) |(136) [(211)
CE-GE - 3.99 | 2.05
(283) {(553)
(80x80x80) PGE - 14.31 [2.50 | 6.85 sec.
(263) {(453) | (168)
SGE-BCR - 5.71 |3.38
(198) |(334)
CE-GE - - 4.05
(558)
(160x80x80) PGE - - 4.61 13.3 sec.
(490) | (170)
SGE-BCR - - 5.87
(385)
Table 1. ARC3D performance with various

algorithms for solution of pentadiagonal sys-
tems.

of processors is increased and grid size is held con-
stant. In most cases, the efficiency drops by at least 10
percent for each factor-of-two increase in the number
of processors. Thus, while performance scales well as
grid size increases, the return for using more processors
diminishes dramatically once the largest useful grid size
is reached, and each processor has less computational
work to do.

Table 1 shows the dependence of the time per step
on the algorithms used to solve the multiple systems of
pentadiagonal equations. On the iPSC/860, the best
performance for any grid size and number of processors
is obtained for the complete-exchange based implemen-
tations (CE-GE), while the sub-structured Gaussian
elimination based algorithms (SGE-BCR) exhibit poor
performance. This is primarily due to high arithmetic
overhead associated with this class of algorithms, de-
spite their high degree of easily exploitable concurrency.
The pipelined Gaussian elimination based implementa-
tions (PGE) perform well, but appear to suffer from the
relatively high message latency of the iPSC/860. Mem-
ory usage for these algorithms is calculated in 64-bit
words per grid point: 67.5 for CE-GE, 44.5 for one-way
PGE, and 49.5 for either two-way PGE or SGE-BCR.
The calculation ignores the storage of overlap regions,



and counts integer arrays as one-half word. The data
for results in Figs. 12 and 13 were obtained using the
two-way PGE algorithm for solving pentadiagonal sys-
tems. The applications examples were computed with
the one-way PGE scheme. The choice of algorithms
was made largely on the basis of memory usage. The
PGE methods allow the use of larger computational
grids or fewer processors, compared to the faster CE-
GE approach.

Processor Time/step

Partition Problem Size

(PizP;zP:) | (80x40x40) [ (80x80x80)
(8x4x4) 0.76 2.72
(8x8x2) 0.88 3.01
(16x8x1) 1.06 3.96
(32x4x1) 1.30 6.47
(64x2x1) 2.10 B

Table 2. Effect of subdomain aspect ratio on perfor-
mance.

The results in Table 2 show the dependence of
time-per-step for a fixed grid size on the aspect ratio
of the processor grid for a two-way pipelined Gaussian
elimination based implementation. Optimum perfor-
mance is obtained when the processor grid associated
with the spatial data decomposition is proportional to
the computational grid dimensions. Performance vari-
ations up to a factor of three can result from inap-
propriate spatial data decompositions. Similar results
hold for implementation based on other pentadiagonal
solution algorithms as well.

For practical use, the grid should be only large
enough to resolve the flow physics with the required
accuracy. For aircraft design, a range of 0.1 to 10.0
million grid points is reasonable. The real goal is not to
reach some level of gigaflops or teraflops, but to reduce
the time to obtain a solution. There will always be a
point of diminishing returns in the use of large numbers
of processors. Fig. 13 suggests that for practical grid
sizes, processor counts in the hundreds, rather than
thousands, will be most effective. Interprocessor com-
munications and per-processor computing rates both
play a part in determining the optimal number of pro-
cessors. Both areas must improve substantially if low
solution turnaround times are to be achieved. Faster
communication can improve efficiency, allowing effec-
tive use of more processors, but the available speedup
with 128 processors will be no more than a factor of
2 for most of the cases tested. Processors with higher
sustained computational rates are essential, but in turn
give a speedup which is limited by the communication
latency, bandwidth, and network connectivity.
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Another approach to high performance scalability
is to do more than one problem at a time. Many design
optimizers run at least one test case for each variable
to be optimized, in order to calculate derivatives before
stepping to a new design point. These cases can be
run in parallel, with a considerable improvement in
efficiency. For example, an optimization case might use
a grid of 256,000 points. On 128 processors, the case
would run at 420 MFLOPS (see Fig. 13). For four cases
run concurrently on 32 processors each, the processing
rate would be 142 x 4, or 568, MFLOPS, finishing 26
percent sooner.

Future Work

The CFD module will be combined with an opti-
mizer, for use in aerodynamic optimization. Integration
with structures and propulsion codes will proceed, to
give the ability to analyze and optimize high speed
aircraft at cruise conditions. Other disciplines, such
as controls, will be included later, to broaden the range
of flight conditions for which these tools are useful.

The parallelization of the code depends only on
having a MIMD (Multiple Instruction, Multiple Data)
computer with a message passing capability. Most
current and emerging parallel computer architectures
meet this description, and the code will be implemented
on those which become available as HPCCP testbed
machines. Each new implementation will be evaluated
to ensure that the capabilities of these machines are
used efficiently.

Conclusions

A new CFD module provides significant progress
toward the goal of performing multidisciplinary com-
putations on highly parallel computers. The module
computes both Euler and Reynolds-averaged Navier-
Stokes solutions about complex aircraft configurations.
It covers flow speeds from takeoff, through the HSCT
flight regime, to higher Mach numbers, provided perfect
gas and continuity assumptions apply. An algebraic
turbulence model and a wide selection of boundary
conditions are included.

It is now possible to compute compressible flow-
fields with familiar tools, but on computer architectures
which will scale to unprecedented levels of performance.
This capability is available for both single-discipline
fluids research, and for inclusion in multidisciplinary
analysis and optimization.

There is substantial room for improvement in all
areas affecting CFD performance on parallel comput-
ers. With nearly two orders of magnitude between the
usable single-processor performance of the iPSC/860
and the best vector supercomputers, there is room for
dramatic improvements. The cost-effectiveness of those
improvements, particularly in the areas of memory ac-
cess speed and interprocessor bandwidth, will be crit-
ical. User codes will improve gradually, as program-
ming for parallel machines becomes better understood,



or perhaps more rapidly, if improved algorithmic ap-
proaches are discovered. Computation of single CFD
problems at teraflops rates does not seem to be within
reach, but teraflops multidisciplinary optimization may
be only a few years away.

Acknowled&ements

Computational resources were provided by the Nu-
merical Aerodynamic Simulation (NAS) Program at
NASA Ames Research Center. This research has been
funded through NASA Ames Research Center Coopera-
tive Agreement NCC 2-505 and Contract NAS 2-12961.

References

'Renze, K. J., Buning, P. G., and Rajagopalan, R.
G., “A Comparative Study of Turbulence Models for
Overset Grids,” AIAA Paper 92-0437, January, 1992.

?Pulliam, T. H., and Chaussee, D. S., “A Diagonal
Form of an Implicit Approximate-Factorization Algo-
rithm,” Journal of Computational Physics, Vol. 39, pp.
347-363, 1981.

3Holst, T. L., Thomas, S. D., Kaynak, U., Gundy, K.
L., Flores, J., and Chaderjian, N. M., “Computational
Aspects of Zonal Algorithms for Solving the Compress-
ible Navier-Stokes Equations in Three Dimensions,”
Numerical Methods in Fluid Mechanics [, edited by
K. Oshima, Inst. of Space and Astronautical Sciences,
Tokyo, 1985, pp. 113-122.

‘Ryan, J. S., Flores, J., and Chow, C.-Y., “Devel-
opment and Validation of a Navier-Stokes Code for
Hypersonic External Flow,” Journal of Spacecraft and
Rockets, Vol. 27, No. 2, 1990, pp. 160-166.

5Benek, J. A., Dougherty, F. C., and Buning, P. G.,
“Chimera: A Grid-Embedding Technique,” AEDC-TR-
85-64, December 1985.

8Suhs, N. E., and Tramel, R. W., “PEGSUS 4.0
User’s Manual,” AEDC-TR-91-8, June 1991.

"Meakin, R. L., “A New Method for Establishing
Intergrid Communication among Systems of Overset
Grids,” AIAA-91-1586-CP, AIAA 10th Computational
Fluid Dynamics Conference, June 14-27, 1991, Hon-
olulu, Hawaii.

8Baldwin, B. S. and Lomax, H., “Thin-Layer Approx-
imation and Algebraic Model for Separated Turbulent
Flows,” AIAA Paper 78-257, January 1978.

SBarszcz, E., “Intercube Communication for the
iPSC/860,” Proceedings of the Scalable High Perfor-
mance Computing Conference, pp. 307-313, Williams-
burg, Virginia, April 1992.

1%Ying, S. X., Steger, J. L., Schiff, L. B., and
Baganoff, D., “Numerical Simulation of Unsteady, Vis-
cous, High-Angle-of-Attack Flows using a Partially
Flux Split Algorithm,” AIAA Paper 86-2179, August
1986.

12

Lawrence, S. L., Chaussee, D. S., and Tannehill,
J. C., “Application of an Upwind Algorithm to the
Three-Dimensional Parabolized Navier-Stokes Equa-
tions,” AIAA paper 87-1112, June 1987.



